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Abstract

The problem of transient heating of a semitransparent spherical body immersed in a stationary hot gas is investigated, taking into account
the effect of thermal radiation. The size of the domain occupied by the gas is assumed to be finite, and the outer boundary of this domain is
kept at constant temperature. The initial radial distribution of temperature in the body is taken into account. A modification of Newton’s law for
body heating is introduced via a correction to either the gas temperature or convection heat transfer coefficient. Explicit expressions for these
corrections are obtained for the case of homogeneous initial distribution of temperature and radiation absorption inside the body, and constant
radiation temperature. For large Fourier numbers Fo, the correction to gas temperature is expected to be of limited practical importance, as both
this correction and the difference between the initial gas temperature and the body surface temperature approach zero (heat transferred from gas
to the body becomes negligible). The results are analysed using values of parameters relevant to diesel engines. The values of the corrections to
the convection heat transfer coefficient vary from about 0.1 (large domain occupied by gas and Fo = 500) to 2.8 at Fo = 0.1. This means that
ignoring these corrections is expected to lead to unacceptably large errors in computations. The total time for body heating is shown to be more
than an order of magnitude longer when compared to the heating of this body in a perfectly stirred gas. The effect of thermal radiation on droplet
heating is accounted for via the additional corrections of gas temperature or the convection heat transfer coefficient. It is shown that the effects of
radiation on the surface heat flux are small for small Fo, but become dominant for large Fo (Fo > 50).
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The conventional approach to modeling the heating of a
spherical body immersed in a hot gas is based on the appli-
cation of Newton’s law, according to which the heat flux from
gas to droplets is estimated as [1]:

q̇ = h(Tg0 − Ts) (1)

where Ts is the temperature of the surface of the body, Tg0 is
the ambient gas temperature, h = Nukg/2Rb , Nu is the Nus-
selt number, kg is the gas thermal conductivity, Rb is the radius
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of the body. For quasi-stationary processes (the boundary layer
around a body has enough time to develop) when Re = 0 and in
the absence of natural convection, it is known that Nu = 2 and
h = kg/Rb [1]. The transient heating of a sphere, kept at con-
stant temperature and immersed in a hot gas, was considered
in several papers including [2–4]. Ignoring the contribution of
droplet relative velocity and the effects of natural convection, it
was shown that Eq. (1) with Nu = 2 can still be used if we re-
place gas thermal conductivity by the time-dependent effective
thermal conductivity.

A more general problem of heating of a spherical body,
based on a coupled solution of the heat conduction equation
in the body and the gas was solved in [5]. The solution was
based on the Laplace transform and the gas medium was as-
sumed to be infinite. The initial body and gas temperatures were
assumed to be constant. Although the temperature distribution
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Nomenclature

a coefficient introduced in Eq. (4) . . . . . . . . . . . . m−b

A function defined by Eq. (A.11)
ab,g coefficients introduced in Eq. (8) . . . . . . . .

√
s m−1

An coefficients introduced in
Eqs. (14) and (15) . . . . . . . . . . . . . . . . . . . m3 K W−1

a0,1,2 coefficient used in the estimate of a

b coefficients introduced in Eq. (4) or following
Eq. (A.14) . . . . . . . . . . . . . . . . . . . . . . . . . . J m−3 K−1

B function defined by Eq. (A.11)
b0,1,2 coefficient used in the estimate of b in Eq. (4)
c specific heat capacity . . . . . . . . . . . . . . . J kg−1 K−1

Fo Fourier number
h convective heat transfer coefficient . . . W m−2 K−1

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

Nu Nusselt number
P radiation source in Eq. (2) . . . . . . . . . . . . . . . . K s−1

pn(t) functions introduced in Eq. (7) . . . . . . . . . . K m s−1

q̇ heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

R distance from the center . . . . . . . . . . . . . . . . . . . . . m
R̃(g) R(g)/Rb

R̃n πnR/Rb

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T̃ (Tg0 − T )/(Tg0 − Tb0)

u (T − Tg0)R

vn eigenfunctions found from Eq. (8)
‖vn‖2 norm of vn with weight b . . . . . . . . . . . . J m−2 K−1

Greek symbols

�Tc, �Tr functions introduced in Eqs. (14) and (15) . . . K
�T̃c −�Tc/(Tg0 − Tb0)

ε
√

kgcpgρg/(kbcbρb)

ζ �Tc/�Tr

Θn(t) function defined by Eq. (A.21) . . . . . . . . . . . . . K m
θR radiation temperature . . . . . . . . . . . . . . . . . . . . . . . . K
κ thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

λn eigenvalues found from Eq. (9) . . . . . . . . . . . . s−0.5

λ̃n λnabRb/π

ξ (Tg0 − Ts(r))/(Tg0 − Ts(c))

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

Φ function introduced in Eq. (18)
χ parameter defined by Eq. (17)

Subscripts

b body
eff effective
ext external
g gas
s surface
0 initial
in the whole domain and the heat flux at the body boundary
were calculated, no formal links with the Newton’s law were
investigated. Also, it remained unclear how the results could be
used in computational fluid dynamics (CFD) codes, where the
areas occupied by gas are limited by cell sizes, and how the
non-constant initial distribution of temperature inside the body
can be taken into account. The effects of thermal radiation were
ignored.

Özişik [6] considered a rather general problem of heat trans-
fer through N spherical layers. The author looked for separate
solutions in each layer and then these solutions were matched
by the conditions of continuity of temperatures and their deriv-
atives. These conditions led to two systems of equations to find
the relevant eigenfunctions and eigenvalues. These systems of
equations, however, were not actually solved and thus the solu-
tion was not presented in an explicit form.

Numerical simulations of cooling and heating of spherical
bodies with a view to various engineering applications have
been reported in a number of papers, including [7,8].

The objective of this paper is to develop a general analytical
model that describes the process of heating a spherical body im-
mersed in a hot gas, taking into account the variations of body
surface temperature (coupled solution), non-uniform initial dis-
tribution of temperature in the body, the effects of radiation,
and the finite size of the domain occupied by the gas. The con-
tribution of the flow around the body is ignored, but a direct
link with the Newton’s law is established. As in [6] our so-
lution is based on the separation of variables and finding the
relevant eigenfunctions and eigenvalues. In contrast to [6], how-
ever, we look for a solution in the whole domain (not in each
layer separately) and finally obtain this solution in an explicit
form. The boundary conditions are different from those used in
[6]. The prediction of the model is compared with the predic-
tion of Cooper’s [5] solution.

The model is expected to have a wide range of potential
engineering, environmental and medical applications, includ-
ing heating of UO2 particles (the problem considered in [5]),
aerosols, droplets etc [9–13]. A number of simplifications of
the model will be made in order to capture the main features of
transient heating of a spherical body. These include decoupling
of the heat transfer equation from the mass transfer equation in
the gas phase, ignoring chemical reactions in the gas phase and
interaction between bodies. Despite the above mentioned sim-
plifications, the effect of the model will be illustrated for the
values of parameters typical for diesel engines [14–17]. In this
case we will be able to illustrate the trends of the processes tak-
ing into account the effects almost universally ignored in the
previous studies, rather than suggest a comprehensive model of
the phenomenon. The ways in which the developed model can
be implemented into computational fluid dynamics codes will
not be investigated (cf. analyses for fixed convection heat trans-
fer coefficient reported in [18–22]).

The basic equations and approximations of the model are
presented and discussed in Section 2. In Section 3 the analytical
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solution is presented and discussed. The analysis of the solution
for parameters typical for diesel engines is presented in Sec-
tion 4. The main conclusions of the paper are summarized in
Section 5.

2. Basic equations and approximations

Let us assume that a spherical body of radius Rb and initial
temperature Tb0(R) is immersed in the center of a homoge-
neous gaseous sphere of radius Rg at temperature Tg0. The
outer surface temperature of the gaseous sphere remains con-
stant and equal to Tg0. Rg is assumed to be greater than Rb , and
finite. The variation of the temperatures in the gas-body do-
main is described by the heat conduction equation in the form
[23,24]:

∂T

∂t
= κ

(
∂2T

∂R2
+ 2

R

∂T

∂R

)
+ P(t,R) (2)

where

κ =
{

κb = kb/(cbρb) when R � Rb

κg = kg/(cpgρg) when Rb < R � Rg
(3)

κb(g) is the body (gas) thermal diffusivity, kb(g) is the body (gas)
thermal conductivity, cb(pg) is the body (gas) specific heat ca-
pacity, ρb(g) is the body (gas) density, R is the distance from
the center of the sphere, t is time, T (Rg) = Tg0 = const.

The radiation term is assumed zero outside the body:
P(t,R) = 0 when Rb < R � Rg . P(t,R) is discontinuous at
R = Rb in the general case. This assumption effectively means
that we ignore the absorption of thermal radiation in the gas,
and assume that the gas is optically thin [25]. The values of
P(t,R) for a specific semi-transparent substance could be cal-
culated using the well-known Mie theory [26–29], but this
would have been of limited practical importance. An approx-
imate model describing the absorption of thermal radiation in
symmetrically illuminated diesel fuel droplets was developed
in [30]. It was further generalised in [28,29] for the case of
symmetric and asymmetric illumination of droplets. In [31,32],
on the other hand, a simplified model of thermal radiation ab-
sorption in diesel fuel droplets was developed, in which only
the total amount of radiation absorbed in them was taken into
account. In this case we can formally assume that thermal ra-
diation is absorbed in them homogeneously. An approximate
expression for P(t,R) was derived in the form [18]:

P(R) = 3aσRb−1
b θ4

R/cbρb (4)

where θR is the radiation temperature,

a = a0 + a1θR/103 + a2
(
θR/103)2

b = b0 + b1θR/103 + b2
(
θR/103)2

θR can be assumed equal to the external temperature in the case
of an optically thin gas in the whole domain. In the case when
gas is optically thin in the vicinity of the body Rb < R < Rg

only, we can assume that θR = Tg(Rg). In both cases our as-
sumption that the absorption of thermal radiation in the gas is
small compared with the absorption of thermal radiation in the
body is valid. The radiative losses from the body are ignored,
which is justified when the body temperature is well below θR .
These assumptions are usually justified in engineering applica-
tions. In the following analysis the focus will be on optically
thin gases in the whole domain when θR = Text. In diesel en-
gines this temperature can be associated with the temperature
of remote flames, and can reach more than 2500 K [15]. The
generalisation of the analysis to the case when θR = Tg(Rg) is
straightforward.

As was shown in [18,33,34], even in the case of strong radia-
tive heating of diesel fuel droplets, modeling of the detailed dis-
tribution of thermal radiation absorption in them, only slightly
improves the accuracy of calculation when compared with the
application of the simplified formula (4). This formula will be
used in this paper although the solution will be presented for
the general case P(R, t). The expressions for the coefficients
a and b for a typical automotive diesel fuel (low sulphur ESSO
AF1313 diesel fuel) in the range of external temperatures 1000–
3000 K, obtained in [32], will be used.

Eq. (2) needs to be solved subject to initial and boundary
conditions:

T |t=0 =
{

Tb0(R) when R � Rb

Tg0 when Rb < R � Rg
(5)

T |R=R−
b

= T |R=R+
b

kb

∂T

∂R

∣∣∣∣
R=R−

b

= kg

∂T

∂R

∣∣∣∣
R=R+

b

T |R=Rg = Tg0 (6)

Note that for opaque bodies the effect of radiation could have
been described via the modification of the boundary conditions
(6) and not via introduction of the term P(t,R) (see e.g. [35–
37]). The analysis of this case is beyond the scope of this paper.

A number of simplifications of the model has been made
in order to capture the main features of transient heating of
a spherical body. These include decoupling of the heat trans-
fer equation from the mass transfer equation in the gas phase,
ignoring chemical reactions in the gas phase and interaction be-
tween bodies. Also, the ways in which the developed model can
be implemented into computational fluid dynamics codes have
not been investigated (cf. a similar analysis for fixed convection
heat transfer coefficient reported in [18–20]).

3. Analytical solutions

The solution of Eq. (2) subject to initial and boundary condi-
tions (5)–(6) in the limiting case of Rg → ∞, Tb0 = const and
in the absence of radiation was reported in [5]. We obtained an
alternative form of this solution, based on the assumption that
Rg is finite, Tb0 depends on R and taking into account the con-
tribution of thermal radiation (see Appendix A):

T (R, t) = Tg0 + 1

R

∞∑
n=1

[
exp

(−λ2
nt

) 1

‖vn‖2

×
Rb∫ (−(

Tg0 − Tb0(R)
))

Rvn(R)cbρb dR
0
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+
t∫

0

exp
(−λ2

n(t − τ)
)
pn(τ)dτ

]
vn(R) (7)

where

vn(R) =
⎧⎨⎩

sin(λnabR)
sin(λnabRb)

when R < Rb

sin(λnag(R−Rg))

sin(λnag(Rb−Rg))
when Rb � R � Rg

(8)

‖vn‖2 = cbρbRb

2 sin2(λnabRb)
+ cpgρg(Rg − Rb)

2 sin2(λnag(Rb − Rg))
− kb − kg

2Rbλ2
n

pn(t) = cbρb

‖vn‖2

Rb∫
0

RP(t,R)vn(R)dR

A countable set of positive eigenvalues λn is found from the
solution of the equation:√

kbcbρb cot(λabRb) − √
kgcpgρg cot

(
λag(Rb − Rg)

)
= kb − kg

Rbλ
(9)

These are arranged in ascending order 0 < λ1 < λ2 < · · ·. ab =√
cbρb

kb
, ag =

√
cpgρg

kg
.

If Tb0 does not depend on R then Eq. (7) can be simplified
to

T (R, t) = Tg0 + 1

R

∞∑
n=1

[
exp

(−λ2
nt

) (Tg0 − Tb0)
√

kbcbρb

λn‖vn‖2

×
[
Rb cot(λnabRb) − 1

λnab

]

+
t∫

0

exp
(−λ2

n(t − τ)
)
pn(τ)dτ

]
vn(R) (10)

In what follows the focus will be on this form of the solution.
This solution can be further simplified if we ignore the depen-
dence of P on R and t . In this case with a view of Eq. (4) the
expression for pn can be rewritten in a more explicit form:

pn = 3aσRb−1
b θ4

R

‖vn‖2λ2
na

2
b

[
1 − λnabRb cot(λnabRb)

]
(11)

Remembering our assumption that the body is stationary we
can estimate the heat flux arriving at the surface of the body:

q̇ = kg

∂T

∂R

∣∣∣∣
R=Rb+0

= kb

∂T

∂R

∣∣∣∣
R=Rb−0

= kg

Rb

[
Teff − T (Rb, t)

]
(12)

where

Teff = Tg0 + �Tc + �Tr = Tg0 + �Tc(1 + ζ ) (13)

�Tc = (Tg0 − Tb0)kbabag

∞∑
n=1

An exp
(−λ2

nt
)

(14)

�Tr = −3aσRb−1
b θ4

Rag

ab

∞∑ An

λ2
n

(
1 − exp

(−λ2
nt

))
(15)
n=1
An = 1

‖vn‖2

[
Rb cot(λnabRb) − 1

λnab

]
cot

(
λnag(Rb − Rg)

)
ζ = �Tr/�Tc

Eq. (12) describes Newton’s law for a stationary body with
h = kg/Rb , in which Tg0 is replaced by Teff. �Tc and �Tr

describe the required corrections to Tg0 due to the effects of
transient heat conduction and radiation, respectively. Note that
the values of �Tc are expected to be maximal at t → 0, when
�Tr → 0. The values of |�Tr | are expected to be maximal at
t → ∞, when �Tc → 0. Note that neither �Tc nor �Tr depend
on T (Rb, t) ≡ Ts(t). The parameter ζ describes the relative
contribution of the correction to Tg0 due to thermal radiation.

Eq. (12) can be rewritten in an alternative form:

q̇ = h̃(Tg0 − Ts) (16)

where h̃ = kg

Rb
χ ,

χ = 1 + �Tc + �Tr

Tg0 − Ts

(17)

In this case the factor χ describes the correction to h or kg ,
which allows us to take into account the effect of transient heat-
ing of the body. This approach to the generalisation of Newton’s
law is similar to the one reported in [3], where it was assumed
that the temperature of the body remains constant. The limita-
tion of this approach is that the value of χ depends explicitly on
Ts(t). The series in Eq. (14) diverges at t = 0 and R = Rb due
to the initial jump of temperature at the surface of the body, and
cannot be used in the immediate vicinity of the point (t = 0,
R = Rb) due to poor convergence of the series.

Note that Eq. (16) can be obtained from the earlier men-
tioned solution by Cooper [5] (Rg → ∞, T (R, t) = const, no
radiation) with χ given by the following formula:

χ =
− kb

kg

∫ ∞
0 Φ(u) exp(−u2Fo κb

κg
)du∫ ∞

0
sinu

u cosu−sinu
Φ(u) exp(−u2Fo κb

κg
)du

(18)

where

Φ(u) = (u cosu − sinu)2

u2 sin2 u + κg

κb
[ kb

kg
(u cosu − sinu) + sinu]2

Fo = tκg/R
2
b (Fourier number).

Before the analysis of the equations derived in this section
for specific values of parameters is undertaken, they will be
simplified in some limiting cases.

If ε ≡
√

kgcpgρg

kbcbρb
→ 0 then Eq. (9) can be simplified to:

cot(λabRb) = kb − kg

kbabRbλ
(19)

The assumption ε → 0 is equivalent to the assumption that
kb → ∞. The latter assumption is widely used in engineering
CFD codes describing particle and droplet heating. Also, the
original assumption ε → 0 could be supported by the fact that
ρb � ρg .
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The solution of Eq. (19) forms a countable set of increas-
ing positive eigenvalues λn. In the limit λn → ∞ this solution
reduces to:

λn = (n + 0.5)π

abRb

(20)

In the case ε → 0, series (10) converges absolutely and uni-
formly (see Appendix C).

In the case of a perfectly stirred gas, we can assume that its
temperature is maintained everywhere equal to Tg0 during the
whole process of droplet heating. Ignoring the effect of ther-
mal radiation, the solution of Eq. (2) for 0 � R � Rb with
the boundary condition T (Rb, t) = Tg0 and initial condition
T (R, t = 0) = Tb0 can be presented as:

T (R, t) = Tg0 + 2(Tg0 − Tb0)

∞∑
n=1

(−1)n sin R̃n

R̃n

× exp

[
−κb

(
πn

Rb

)2

t

]
(21)

where R̃n = πnR/Rb . Remembering that:

2
∞∑

n=1

(−1)n sin R̃n

R̃n

= −1

we can see that T (R, t) → Tb0 when t → 0. Also, T (R, t) →
Tg0 when t → ∞, as expected.

Predictions of Eqs. (10) and (21) will be compared in the
next section.

4. Analysis of the solution

The focus of the analysis of this section will be mainly on
Eqs. (9), (10), (14), (15) and (16). Eq. (10) gives us the actual
evolution of the distribution of temperature in the body and gas,
while Eqs. (14), (15) and (16) allow us to estimate the limits of
applicability of Newton’s law of heating. All these equations
use the eigenvalues λn obtained from Eq. (9). The analysis of
these equations is simplified when the following dimensionless
parameters are introduced for Tg0 > Tb0:

λ̃n = λnabRb/π, R̃(g) = R(g)/Rb

T̃ = (Tg0 − T )/(Tg0 − Tb0)

Fob = tκb/R
2
b (body Fourier number).

In the limit ε → 0, λn are expected to be close to those de-
termined by Eq. (20). This means that λ̃n in this case would be
determined by a particularly simple expression:

λ̃n = n + 0.5 (22)

Let us consider typical values of parameters for the case
when diesel fuel droplets with an initial temperature of 300 K
are injected into a gas at temperature 800 K and pressure 30 atm
(situation typical for diesel engines [16]):

ρb = 600 kg m−3, kb = 0.145 W m−1 K−1

cb = 2830 J kg−1 K−1, ρg = 23.8 kg m−3

kg = 0.061 W m−1 K−1, cpg = 1120 J kg−1 K−1
Fig. 1. Plots of λ̃n versus n based on Eq. (22) (solid) and the solution of Eq. (9)
(dashed); numbers near the solid curves correspond to the values of R̃g ; part
(a) refers to ε = 0.081 and other values of parameters used in Section 4; part
(b) refers to the same parameters as in (a), except that ε is assumed equal to
0.00081.

These parameters allow us to estimate ε = 0.081.
The plots of λ̃n versus n based on Eq. (9) for the values of

parameters given above and R̃g = 3, 10 and 50 are presented
in Fig. 1(a). In the same figure the line given by Eq. (22) is
also presented. As can be seen from this figure, the values of
λ̃n increase almost linearly with increasing n. For given n these
values decrease with increasing R̃g . None of these properties of
λ̃n seem to be at first evident from the observation of Eq. (9).
Also, the values of λ̃n predicted by Eq. (9) seem to be rather
different from those which follow from Eq. (22), especially for
large R̃g . That means that ε = 0.081 is not small enough to
justify the applicability of Eq. (22). In Fig. 1(b) the same plots
as in Fig. 1(a) are presented but for ε = 0.00081. As follows
from this figure, approximation (22) in this case appears to be
reasonably good in the whole range of R̃g under consideration.

Plots of T̃ versus R̃ for R̃g = 3 and R̃g = 50, and various
Fo are shown in Fig. 2. Effects of thermal radiation are ig-
nored. The plots for R̃g > 50 are indistinguishable from those
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Fig. 2. Plots of T̃ versus R̃, based on Eq. (10), for R̃g = 3 (part (a)) and R̃g = 50
(part (b)), n = 100 and various Fo (numbers near the curves). The effect of
thermal radiation is ignored.

for R̃g = 50 for the Fo under consideration. The Cesaro method
of summation was used for numerical computation of the series
for this and the following plots [38] (see Appendix D for the de-
tails). 100 terms in the series were used. Further increase of the
number of terms did not change the results for the values of Fo
under consideration. For Fo < 0.1, however, the convergence
of the series deteriorated, and the solution turned out to be of
limited practical use for these Fo. Considering values of para-
meters given earlier and Rb = 10 µm we obtain that Fo = 0.1
corresponds to

t = 0.1
R2

b

κg

≈ 4.4 µs

This time is much shorter than the typical time to heat-up
droplets of this size (about 1 ms). Hence, the processes at
Fo < 0.1 can be safely ignored in this application.

As follows from Fig. 2, for both values of R̃g = 3 and 50,
and with Fo = 0.1, T̃ drops rather quickly from 1 to almost
zero when R̃ increases from about 1 to 2. This corresponds
to temperature increase from the one close to the initial body
temperature Tb0 to the initial gas temperature Tg0. The general
‘flattening’ of the curves for Fo = 1, Fo = 10 and Fo = 100 re-
Fig. 3. The same plots as in Fig. 2, but for various Fob and based on Eq. (21)
(R̃g → 1).

flects the process of heating of the body and cooling of gas in
the vicinity of droplets. The visible discontinuity of the deriva-
tive of T̃ at R̃ = 1 is consistent with the boundary condition (6).
The same discontinuity is present for other Fo, but it is less visi-
ble in the case of small and large derivatives of T̃ . At Fo < 1 gas
cooling appears to be the dominant process, while at Fo > 1 the
intensities of body heating and further gas cooling appear to be
comparable. At Fo = 100 the process of body heating is almost
complete, and the temperature of the body approaches the initial
temperature of the surrounding gas. This process of body heat-
ing is slightly quicker for R̃g = 3 than for R̃g = 50. This result
would be expected since in the case when R̃g = 3 the tempera-
ture at R̃ = 3 is maintained equal to Tg0, while in the case when
R̃g = 50 the temperature at this level is allowed to drop due to
transfer of heat from gas to the body. As follows from Fig. 2(b),
the effect of the body on the gas becomes negligible at R̃ > 10
for all Fo. This is consistent with the estimate of the radius of
the so-called cooling zone around the body, made in [3], based
on a much more simplistic model, using the assumption that
Ts = const. The size of the cooling zone is expected to decrease
significantly when the body motion and the effects of mixing
are taken into account. In the limiting case of perfectly stirred
gas this cooling zone disappears altogether (see Eq. (21)). Note
that the way of practical implementation of the model into the
existing CFD codes is not at first evident. It is unclear how to
make a distinction in the general case between the gas temper-
ature in a computational cell, used in conventional CFD codes,
and temperature T (Rg), required for the implementation of the
model. For small bodies and large cells these temperatures can
be assumed the same.

The plots of T̃ versus R̃ based on Eq. (21) are shown in
Fig. 3 for various Fob . For the values of parameters given above:

Fob = κb

κg

Fo = kbcpgρg

kgcbρb

Fo ≈ 0.037Fo

These plots could be considered to be similar to those pre-
sented in Fig. 2(a), but for R̃g → 1. Comparing the plots shown
in Figs. 2 and 3, one can observe similarities in the temporal
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Fig. 4. Plots of T̃s versus Fo for R̃g = 50 and n = 3, 10, 25, 50 and 100 (num-
bers near the curves) (a); plots of T̃s versus Fo for n = 100 and R̃g = 3, 10 and
> 25 (numbers near the curves) (b). The effect of thermal radiation is ignored.

evolution of T̃ (R̃). There is, however, a noticeable difference
between the curves, shown in Figs. 2 and 3. While in the cases
shown in Fig. 2, the heating of the body is expected to be com-
pleted at Fo = 100, in the case shown in Fig. 3, this heating is
expected to be completed at Fob ≈ 0.3. The latter corresponds
to Fo ≈ 0.3/0.037 ≈ 10. That means that in a well stirred gas,
the heating of the body is expected to take place more than an
order of magnitude faster when compared with the heating of
the body in a quiescent gas. In real-life engineering applications
the time required for a spherical body to heat-up is expected to
be somewhere between the times corresponding to Fo = 100
and Fo = 10.

The plots of

T̃s = (
Tg0 − Tb(R = Rb)

)
/(Tg0 − Tb0)

versus Fo for R̃g = 50 and various numbers of terms n taken in
the series are shown in Fig. 4(a). In Fig. 4(b) the same plots as
in Fig. 4(a) are shown but for n = 100 and various R̃g . As fol-
lows from Fig. 4(a), n = 100 appears to be sufficient to obtain
an accurate solution in the whole range of Fo from 0.1 to 1000.
If we were interested just in Fo > 10 then 10 terms of the series
would have been sufficient; for Fo > 100 we could take n = 3.
As follows from Fig. 4(b), the curves corresponding to R̃g = 10
are almost indistinguishable from the curves corresponding to
Fig. 5. Plots of �T̃c versus Fo for R̃g = 50 and n = 3, 10, 25, 50, 100 and
200 (numbers near the curves) (a); plots of �T̃c versus Fo for n = 100 and
R̃g = 3 and > 10 (numbers near the curves) (b). The effect of thermal radiation
is ignored.

higher R̃g . This result is consistent with our previous conclu-
sion that the influence of the body on the gas temperature does
not penetrate beyond R̃ = 10. Both sets of Figs. 4(a), (b) predict
that T̃s is close to 0.9 for Fo = 0.1. This result is consistent with
Figs. 2(a), (b), and indicates that the change of body surface
temperature is clearly visible even for rather short times corre-
sponding to Fo = 0.1. At times corresponding to Fo < 0.1 the
convergence of the series deteriorates, and more than 100 terms
would be required to describe adequately the properties of T̃s .
This limitation, however, would have limited impact in practi-
cal situations, as we are not generally interested in the initial
heating of the body (t < 4.4 µs in the case of the droplets con-
sidered earlier).

The plots similar to those presented in Figs. 4(a), (b), but for

�T̃c = −�Tc/(Tg0 − Tb0)

(see Eqs. (13) and (14)) are shown in Figs. 5(a), (b). As fol-
lows from Fig. 5(a), for Fo = 0.1 the curves corresponding to
n = 100 are practically indistinguishable from the curves cor-
responding to n = 200. For Fo � 10 ten terms in the series
predict the result which is indistinguishable from the case when
more terms in the series are taken into account. As follows from
Fig. 5(b), the plots for n = 100 and R̃g = 10 are indistinguish-

able from the plots for n = 100 and R̃g > 10. Hence, the case
of R̃g = 10 can be considered to be a good approximation for
the case when a body is immersed into an infinitely large pool



S.S. Sazhin et al. / International Journal of Thermal Sciences 46 (2007) 444–457 451
Fig. 6. Plots of χ versus Fo for various R̃g (numbers near the curves). Effects
of radiation are ignored and 100 terms in the series were taken. The results
predicted by Eq. (18) are shown by circles.

of fluid at the initial temperature Tg0 (cf. the analysis of Figs. 2
and 4). Note that the curve corresponding to n = 3 in Fig. 5(a)
predicts an unphysical solution �T̃c > 0 for small Fo. Hence,
this number of terms is not sufficient for an adequate descrip-
tion of the heat transfer from gas to droplets.

As follows from Figs. 5(a), (b), �T̃c ≈ −1.6 at Fo = 0.1.
This means that we can use Newton’s law for this Fo if we re-
place the gas temperature Tg0 by Teff = Tg0 + 1.6(Tg0 − Tb0)

(see Eq. (13)). The latter value is generally significantly larger
than Tg0. For small Tb0 the modified Newton’s law predicts a
heat transfer rate about 2.6 times larger than the conventional
Newton’s law. The value of �T̃c increases rather quickly with
increasing Fo. For Fo = 1 we have �T̃c ≈ −0.5, while for
Fo = 10 we have �T̃c ≈ −0.1. However, even in this case the
application of the conventional Newton’s law might be not jus-
tified. This can be illustrated via rewriting Eq. (12) in the form:

q̇ = h
[
Teff − T (Rb, t)

]
= h

[
Tg0 − Ts(t) − �T̃c(Tg0 − Tb0)

]
(23)

As follows from this equation, the smallness of �T̃c does not
imply that the term proportional to �T̃c can be ignored. Indeed,
as follows from Fig. 4, Tg0 − Ts(t) always approaches zero for
large Fo. Hence we might expect that the term Tg0 − Ts(t) in
Eq. (23) can eventually become less than the term �T̃c(Tg0 −
Tb0) for sufficiently large Fo. A more reliable way to estimate
the range of applicability of Newton’s law could be based on
Eq. (16).

The plots of χ(Fo) for the same values of parameters as in
Fig. 5(b) are shown in Fig. 6. As follows, from this figure, χ

decreases from about 2.8 to about 1.5 when Fo increases from
0.1 to 1 for all R̃g under consideration. At larger Fo the de-
pendence χ(Fo) becomes a rather sensitive function of R̃g . For
R̃g = 3, χ remains almost constant and equal to 1.5 at Fo > 1.
For R̃g = 10, χ decreases with increasing Fo, until Fo ≈ 20
and then remains almost constant and equal to 1. For R̃g � 50,
χ approaches zero for large Fo, which indicates the decrease
of heat transfer, compared with the one predicted by Newton’s
law. The practical importance of this range of Fo, however, is
limited as here the heat transfer from gas to droplets is neg-
ligible (see the discussion of Fig. 5). On the same figure the
results predicted by the model developed in [5] (Eq. (18)) are
shown. As expected, the values of χ predicted by both Eq. (17)
for R̃g = 50 and Eq. (18) for R̃g = ∞ are practically indistin-
guishable. This confirms the validity of ours and Copper’s [5]
solutions for large R̃g . If the body surface temperature was fixed
then χ → 1 when Fo → ∞ and Rg → ∞ [2–4].

Some results shown in Figs. 5(b) and 6 could be understood
based on the underlying physics of the processes. At small
Fo the body exchanges heat only with the gas in the imme-
diate vicinity of droplets. Hence, the values of T̃ and χ are
not affected by Rg (see Fig. 2). This is consistent with absence
of any visible dependence of χ on R̃g in the plots shown in
Fig. 6. For larger Fo, however, more and more remote areas
of gas become involved in heat exchange with droplets, and
here the dependence of the heat transfer on R̃g becomes im-
portant. For example, for R̃g = 50 the value of T̃ at R̃ = 3
becomes equal to about 0.15 for Fo = 10. This corresponds to
T ≈ 0.85Tg0 + 0.15Tb0 < Tg0. At the same time, for R̃g = 3
the value of T at R̃ = 3 is maintained equal to Tg0. Hence,
heat transfer from gas to droplets is expected to be stronger at
R̃g = 3 than at R̃g = 50, which is consistent with the prediction
of Fig. 6.

Finally, the effect of thermal radiation will be investigated.
We consider two cases: relatively weak radiation corresponding
to θR = Text = 800 K, and strong radiation corresponding to
θR = Text = 2000 K. Following [32], we assume that liquid is
low sulfur ESSO AF1313 diesel fuel and parameters a and b

are calculated from the following formulae:

a = [
0.10400 − 0.054320θR/1000 + 0.008(θR/1000)2]×106b

b = 0.49162 + 0.098369θR/1000 − 0.007857(θR/1000)2

Note that the original values of a given in [32] for Rd measured
in µm have been adjusted to our case where Rd is measured
in m. Other values of parameters are the same as before. The
calculations are performed based on Eqs. (13) and (17) taking
into account both conductive and radiation terms.

Plots of ζ versus Fo for R̃g = 3 and R̃g = 50 are shown in
Figs. 7(a), (b). In all cases ζ → ∞ when Fo → ∞, and ζ in-
creases with increasing Fo. This increase of ζ is monotonous
in the whole range of Fo under consideration in the case of
R̃g = 3. In the case of R̃g = 50 a singularity at about Fo = 20 is
predicted for both external temperatures (not shown in the fig-
ure). This singularity is related to the fact that �Tc is equal to
zero in the vicinity of this point, which corresponds to the case
χ = 1. As expected, the effect of thermal radiation is stronger
for Text = 2000 K than for Text = 800 K. Positive values of ζ for
�Tc > 0 indicate that the thermal radiation provides an addi-
tional heating of the body. The condition �Tc > 0 is equivalent
to the condition χ > 1 (see Fig. 6).
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Fig. 7. Plots of ζ versus Fo for Text = 2000 K (solid curves) and Text = 800 K
(dashed curves) for R̃g = 3 (a) and R̃g = 50 (b). Text describes the effect of
thermal radiation.

Note that thermal radiation controls not only ζ , but also the
value of the body surface temperature. To investigate this effect,
the following dimensionless parameter is introduced:

ξ = Tg0 − Ts(r)

Tg0 − Ts(c)

where Ts(r) is the body surface temperature, calculated in the
presence of thermal radiation, Ts(c) is the body surface tem-
perature, when the effect of thermal radiation is ignored. The
plots of ξ versus Fo for the same values of parameters as in
Figs. 7(a), (b) are shown in Figs. 8(a), (b). As follows from this
figure, ξ is close to 1 for small Fo, but decreases monotonically
with increasing Fo. This means that the effect of thermal radia-
tion accelerates the approach of the body surface temperature to
Tg0 as expected. This effect is particularly important for large
Fo, when the difference between these temperatures becomes
small.

Finally the comparison between the plots of χ versus Fo, in
the presence and in the absence of radiation, is shown in Fig. 9.
In agreement with Figs. 7 and 8, the effect of thermal radiation
on χ is small for small Fo, and increases with increasing Fo.
The sign of the radiative correction to χ depends on whether
χ > 1 or χ < 1. In the first case the radiative corrections lead
to an increase of χ , while in the second case they lead to its
decrease. In both cases �Tr > 0. These results are consistent
with the prediction of Fig. 8.
Fig. 8. The same as Fig. 7, but for the parameter ξ .

Fig. 9. Plots of χ versus Fo for various R̃g (numbers near the curves) in the
presence of thermal radiation. Dotted curves refer to the case without radiation
dashed curves refer to Text = 800 K, solid curves refer to Text = 2000 K.

5. Conclusions

The problem of transient heating of a stationary semitrans-
parent spherical body immersed in a stationary hot gas in the
presence of thermal radiation has been investigated. The size
of the domain occupied by the gas has been assumed to be fi-
nite, and the outer boundary of this domain has been kept at
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constant temperature. The initial radial distribution of temper-
ature in the body has been taken into account in the general
solution. Assuming that the body is stationary and the effects
of natural convection can be ignored, the conventional Newton
law of body heating has been generalised by introducing a cor-
rection for the initial gas temperature or convective heat transfer
coefficient. Explicit expressions for these corrections have been
obtained. The results have been analysed for values of parame-
ters relevant to diesel engines.

It has been pointed out that in the absence of radiation the
correction to the gas temperature decreases from about 1.6 of
the difference between the initial gas and droplet temperatures
at gas Fourier number Fo = 0.1 to about 0.1 of this difference
for Fo = 10 and Rg � 10, or to about 0.3 of this difference for
Fo = 10 and Rg = 3. For large Fo, this correction is expected to
be of limited practical importance, as both this correction and
the difference between the initial gas temperature and the body
surface temperature approach zero (heat transferred from gas to
the body becomes negligible).

The correction of the convective heat transfer coefficient has
led to essentially the same conclusions as the correction of gas
temperature. For small Fo, this correction does not depend on
the size of the domain, and reaches about 2.8 at Fo = 0.1. For
Fo > 1 this correction becomes sensitive to the size of the do-
main. For large domains it has been shown to be the same as
follows from the earlier model suggested in [5] for an infinitely
large domain occupied by the gas. The values of this correction
to Newton’s law vary from about 0.1 (large domain occupied
by gas and Fo = 500) to 2.8 at Fo = 0.1. This means that ignor-
ing these corrections is expected to lead to unacceptably large
errors in computations.

The body heating process is expected to be almost completed
at times corresponding to Fo = 100. This is more than an order
of magnitude longer than the time required for the same body
heating in a perfectly stirred gas, in which the body surface tem-
perature is maintained equal to the initial gas temperature.

The effect of thermal radiation on droplet heating has been
accounted for via additional corrections of the initial gas tem-
perature and the convection heat transfer coefficient. It has been
pointed out that for the parameters typical for diesel engines,
these corrections are negligibly small for small Fo, but can be-
come significant for large Fo. In the latter case, however, the
overall heat transfer process becomes very weak.

A number of simplifications of the model (e.g. ignoring the
effects of evaporation and temperature dependence of physical
parameters) limits the range of its direct applications. In the
case of diesel engines, this model can be considered as a base
for development of a more comprehensive model. The present
version of the model can illustrate the contribution of the tran-
sient effects on diesel droplet heating at a qualitative level.

Appendix A. Derivation of formula (7)

Introducing a new variable

u = (T − Tg0)R
we can simplify Eq. (2) and initial and boundary conditions (5)–
(6) to:

∂u

∂t
= κ

∂2u

∂R2
+ RP(t,R) (A.1)

u|t=0 =
{−T0R when R � Rb

0 when Rb < R � Rg
(A.2)

u|R=R−
b

= u|R=R+
b

kb[Rbu
′
R − u]|R=R−

b
= kg[Rbu

′
R − u]|R=R+

b

u|R=Rg = 0, (A.3)

where T0 ≡ T0(R) = Tg0 −Tb0(R) depends on R in the general
case.

Conditions (A.3) need to be amended by the boundary con-
dition at R = 0. Since T −Tg0 is finite at R = 0 then u|R=0 = 0.

We look for the solution of Eq. (A.1) in the form:

u =
∞∑

n=1

Θn(t)vn(R) (A.4)

where functions vn(R) form the full set of non-trivial solutions
of the eigenvalue problem:

d2v

dR2
+ a2λ2v = 0 (A.5)

subject to boundary conditions:

v|R=0 = v|R=Rg = 0

v|R=R−
b

= v|R=R+
b

(A.6)

kb[Rbv
′
R − v]|R=R−

b
= kg[Rbv

′
R − v]|R=R+

b

where

a = 1√
κ

=

⎧⎪⎨⎪⎩
√

cbρb

kb
≡ ab when R � Rb√

cpgρg

kg
≡ ag when Rb < R � Rg

(A.7)

Note that λ has dimension 1/
√

time. We look for the solution
of Eq. (A.5) in the form:

v(R) =
{

A sin(λabR) when R � Rb

B sin(λag(R − Rg)) when Rb < R � Rg
(A.8)

Function (A.8) satisfies boundary conditions (A.6) at R = 0.
Having substituted function (A.8) into boundary conditions
(A.6) at R = Rb we obtain:

A sin(λabRb) = B sin
(
λag(Rb − Rg)

)
(A.9)

Akb

[
Rbλab cos(λabRb) − sin(λabRb)

]
= Bkg

[
Rbλag cos

(
λag(Rb − Rg)

)
− sin

(
λag(Rb − Rg)

)]
(A.10)

Condition (A.9) is satisfied when:

A = [sin(λabRb)]−1

B = [sin(λag(Rb − Rg))]−1

}
(A.11)

Having substituted Eqs. (A.11) into (A.10) we obtain:
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kb

[
Rbλab cot(λabRb) − 1

]
= kg

[
Rbλag cot

(
λag(Rb − Rg)

) − 1
]

(A.12)

Remembering the definitions of ab and ag , Eq. (A.12) can be
simplified to:√

kbcbρb cot(λabRb) − √
kgcpgρg cot

(
λag(Rb − Rg)

)
= kb − kg

Rbλ
(A.13)

Eq. (A.13) allows us to find a countable set of positive eigen-
values λn [39] which can be arranged in ascending order 0 <

λ1 < λ2 < · · ·. Note that the negative solutions −λn also sat-
isfy Eq. (A.13) as both sides of this equation are odd functions
of λ. λ = 0, however, does not satisfy this equation. Having
substituted these values of λn into Eq. (A.8) and remembering
Eqs. (A.11) we obtain the expressions for eigenfunctions vn in
the form:

vn(R) =
⎧⎨⎩

sin(λnabR)
sin(λnabRb)

when R � Rb

sin(λnag(R−Rg))

sin(λnag(Rb−Rg))
when Rb < R � Rg

(A.14)

It can be shown (see Appendix B) that functions vn(R) are
orthogonal with weight

b =
{

kba
2
b = cbρb when R � Rb

kga
2
g = cpgρg when Rb < R � Rg

This means that:
∫ Rg

0 vn(R)vm(R)b dR = δnm‖vn‖2, where

δnm =
{

1 when n = m

0 when n �= m

The proof of completeness of this set of functions is much
more complicated (it is based on the methods of functional
analysis and properties of Banach spaces [40]). Implicitly, the
fact that this set is complete, could be supported by the agree-
ment between our results and those of Cooper [5], as mentioned
earlier.

The norm of vn with weight b is calculated as:

‖vn‖2 =
Rg∫
0

v2
nb dR

=
Rb∫

0

[
sin(λnabR)

sin(λnabRb)

]2

cbρb dR

+
Rg∫

Rb

[
sin(λnag(R − Rg))

sin(λnag(Rb − Rg))

]2

cpgρg dR

= cbρb

2 sin2(λnabRb)

[
Rb − sin(2λnabRb)

2λnab

]
+ cpgρg

2 sin2(λnag(Rb − Rg))

×
[
Rg − Rb + sin(2λnab(Rb − Rg))

2λ a

]

n g
= cbρbRb

2 sin2(λnabRb)
+ cpgρg(Rg − Rb)

2 sin2(λnag(Rb − Rg))

− kb − kg

2Rbλ2
n

(A.15)

When deriving Eq. (A.15) we took into account Eq. (A.13).
Since all functions vn satisfy boundary conditions (A.6), func-
tion u defined by expression (A.4) satisfies boundary conditions
(A.3). Let us expand RP(t,R) in a series over vn:

RP(t,R) =
∞∑

n=1

pn(t)vn(R) (A.16)

where:

pn(t) = 1

‖vn‖2

Rg∫
0

RP(t,R)vn(R)b dR

Remembering that P(t,R) = 0 at R > Rb the latter formula
can be simplified to:

pn(t) = cbρb

‖vn‖2

Rb∫
0

RP(t,R)vn(R)dR

Having substituted Eqs. (A.4) and (A.16) into Eq. (A.1)) we
obtain:

∞∑
n=1

Θ ′
n(t)vn(R)

= −
∞∑

n=1

Θn(t)λ
2
nvn(R) +

∞∑
n=1

pn(t)vn(R) (A.17)

When deriving Eq. (A.17) we took into account that functions
vn(R) satisfy Eq. (A.5) for λ = λn. Eq. (A.17) is satisfied if and
only if:

Θ ′
n(t) = −λ2

nΘn(t) + pn(t) (A.18)

The initial condition for Θn(t) can be obtained after substi-
tuting expression (A.4) into initial condition (A.2) for u:

∞∑
n=1

Θn(0)vn(R) =
{−T0R when R � Rb

0 when Rb < R � Rg
(A.19)

Remembering the orthogonality of vn with the weight b, we
obtain from Eq. (A.19):

Θn(0) = 1

‖vn‖2

Rb∫
0

(−T0R)vn(R)b dR

If T0 = const then this equation can be further simplified to:

Θn(0) = − cbρbT0

‖vn‖2 sin(λnabRb)

Rb∫
0

R sin(λnabR)dR

= T0
√

kbcbρb

λ ‖v ‖2

[
Rb cot(λnabRb) − 1

λ a

]
(A.20)
n n n b
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The solution of Eq. (A.18) subject to the initial condition
(A.20) can be written as:

Θn(t) = exp
(−λ2

nt
)
Θn(0) +

t∫
0

exp
(−λ2

n(t − τ)
)
pn(τ)dτ

(A.21)

Eq. (7) follows from the definition of u and Eqs. (A.4) and
(A.21).

Appendix B. Proof of orthogonality of vn(R) with the
weight b

Remembering expressions (A.14) for vn(R) we can write for
n �= m:

Inm ≡
Rg∫
0

vn(R)vm(R)b dR

= kba
2
b

sin(λnabRb) sin(λmabRb)

×
Rb∫

0

sin(λnabR) sin(λmabR)dR

+ kga
2
g

sin(λnag(Rb − Rg)) sin(λmag(Rb − Rg))

×
Rg∫

Rb

sin
(
λnag(R − Rg)

)
sin

(
λmag(R − Rg)

)
dR

= kba
2
b

2 sin(λnabRb) sin(λmabRb)

×
[

sin((λn − λm)abRb)

(λn − λm)ab

− sin((λn + λm)abRb)

(λn + λm)ab

]
− kga

2
g

2 sin(λnag(Rb − Rg)) sin(λmag(Rb − Rg))

×
[

sin((λn − λm)ag(Rb − Rg))

(λn − λm)ag

− sin((λn + λm)ag(Rb − Rg))

(λn + λm)ag

]
= 1

2(λn − λm)

[
kbab sin((λn − λm)abRb)

sin(λnabRb) sin(λmabRb)

− kgag sin((λn − λm)ag(Rb − Rg))

sin(λnag(Rb − Rg)) sin(λmag(Rb − Rg))

]
+ 1

2(λn + λm)

[
− kbab sin((λn + λm)abRb)

sin(λnabRb) sin(λmabRb)

+ kgag sin((λn + λm)ag(Rb − Rg))

sin(λnag(Rb − Rg)) sin(λmag(Rb − Rg))

]
= [

kbab

(
cot(λmabRb) − cot(λnabRb)

)
− kgag

(
cot

(
λmab(Rb − Rg)

) − cot
(
λnab(Rb − Rg)

))]
× [

2(λn − λm)
]−1
+ [−kbab

(
cot(λmabRb) + cot(λnabRb)

)
+ kgag

(
cot

(
λmab(Rb − Rg)

) + cot
(
λnab(Rb − Rg)

))]
× [

2(λn + λm)
]−1

Remembering Eq. (A.13) we can write:

Inm = 1

2(λn − λm)

(
kb − kg

Rbλm

− kb − kg

Rbλn

)
− 1

2(λn + λm)

(
kb − kg

Rbλm

+ kb − kg

Rbλn

)
= kb − kg

2Rbλnλm

− kb − kg

2Rbλnλm

= 0

Appendix C. Proof of convergence of the series in (10) in
the limit ε → 0

Remembering (20) we can expect that (kb − kg)/(2Rbλ
2
n) is

less than any a priori chosen constant for sufficiently large n

(n > N ). Having chosen this constant equal to cbρbRb/4 we
can write:
kb − kg

2Rbλ2
n

� cbρbRb

4 sin2(λnabRb)

for n > N and kb > kg .
Remembering this estimate and expression (A.15) for ‖vn‖2

we obtain:

‖vn‖2|n>N � cbρbRb

4 sin2(λnabRb)
+ cpgρg(Rg − Rb)

2 sin2(λnag(Rb − Rg))

This inequality can be inverted to:

1

‖vn‖2
|n>N �

[
4 sin2(λnabRb) sin2(λnag(Rb − Rg)

)]
× [

cbρbRb sin2(λnag(Rb − Rg)
)

+ 2cpgρg(Rg − Rb) sin2(λnabRb)
]−1

(C.1)

Since the denominator in Eq. (C.1) is the sum of positive terms
we can rearrange the estimate (C.1) to:

1

‖vn‖2
|n>N �

⎧⎨⎩
4 sin2(λnabRb)

cbρbRb
when 0 � R � Rb

2 sin2(λnag(Rb−Rg))

cpgρg(Rg−Rb)
when Rb < R � Rg

(C.2)

With a view of Eq. (A.14) and inequality (C.2) we have the
following estimate:

|vn(R)|
‖vn‖2

|n>N �
{ 4

cbρbRb
when 0 � R � Rb

2
cpgρg(Rg−Rb)

when Rb < R � Rg

}
� const1 (C.3)

This allows us to make the following estimate for sufficiently
large n:∣∣Θn(t)vn(R)

∣∣ �
∣∣Θn(0)vn(R)

∣∣
=

∣∣∣∣T0
√

kbcbρb

λn‖vn‖2

[
Rb cot(λnabRb) − 1

λnab

]
vn

∣∣∣∣
� const2

2
� const3

2
(C.4)
λn n
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When deriving condition (C.4), Eq. (19) was used. Estimate of
λn follows from Eq. (20) for sufficiently large n. Estimate (C.4)
means that in the absence of radiation the series in Eq. (10)
converges absolutely and uniformly at least in the limit ε → 0.

Appendix D. The Cesaro method

It can be proven (see [38]) that if the series

S(x) =
∞∑

n=1

wn(x) (D.1)

converges then

S(x) = lim
nmax→∞

[
1

nmax

nmax∑
n=1

Sn(x)

]
where

Sn(x) =
n∑

k=1

wk(x)

The Cesaro method is based on this result, and it allows to
rewrite S(x) in the form:

S(x) = lim
nmax→∞

[
1

nmax

nmax∑
n=1

(
n∑

k=1

wk(x)

)]

= lim
nmax→∞

[
1

nmax

(
w1nmax + w2(nmax − 1) + · · ·

+ wn(nmax − n + 1) + · · · + wnmax

)]
= lim

nmax→∞

nmax∑
n=1

wn(x)

(
1 − n − 1

nmax

)
(D.2)

Series (D.2) converges much quicker than the original series
(D.1).

Using series (D.2), Eq. (10) has been rearranged for numer-
ical analysis to:

[
T (R, t) − Tg0

]
R =

nmax∑
n=1

wn(t,R)

(
1 − n − 1

nmax

)
(D.3)

where nmax is the maximal number of terms to be taken into
account, wn(t,R) are the terms in the series in the right-hand
side of (10).
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